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ABSTRACT

Three configurations of a strapdown navigation system
are analyzed to determine the effect of mechanizing different
computation frames. For systems computing in the navigation
frame and in an inertial frame, a linear analysis is developed.
These linear theories are verified as accurate analytical
descriptions of the systems by a computer solution of the
system differential equations by numerical methods. Gyro
drift and torquing uncertainty are found to be the predominant
error sources. In the system computing in the geographic
frame, these two error sources resultAin bounded latitude
error but unbounded longitude error. For inertial frame
computation these two error sources result in unbounded
errors for both longitude and latitude.
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1. INTRODUCTION

Any inertial navigation system must solve the accelera-
tion equation to obtain position. and velocity from measured
values of specific force and time. The basic problem in
system design is the choosing of some optimum mechanization
including the choices of mechanical arrangement, the coordi-
nate systems used, and the methods of making calculations.
One method of differentiating between classes of inertial
navigation systems is the physical arrangement of the
instruments used to measure acceleration and attitude. The
majority of inertial ﬁavigation systems today use two or
three single-axis accelerometers mounted on a stabilized
platform which is maintained at the desired orientation by
the attitude reference gyros and platform servo system.(1,2,3)
The platform is either kept non-rotating with respect to
inertial space or precessed so that the input axis of the
accelerometers are kept coincident with some slowly rotating
set of coordinate axes, such as local geographic coordinates.

In the strapped-down systems, which constitute the other
principle class, the accelerometers are mounted to the vehicle
and hence the system is gimballess.(2,4,5) Single axis
accelerometers measure the specific force and resolve it into
body fixed coordinates. These strapped-down navigation
systems are the subject of increasing interest and investiga-
tion because recent advances in computers and gyroscopic

technology have enabled gimballess systems to compete



successfully with gimballed systems for a variety of missions.
(4,5) The gimballess inertial measuring unit potentially
posseSses many advantages over a gimballed inertial measuring
unit. System weighf, volume, power, cost, packaging flex~
ibility, reliability, and maintainability are possible
advantages. Many of these advantages‘are the direct result
of removing the necessity of a gimbal assembly. (6)

However, by removing the gimbals, serious problems are
generated. No longer is there a physically instrumented
reference frame énd no longer do the inertial measuring
instruments operate in a comparatively benign environment.
Now the measurement of accelerations and angular rates is
done in the body coordinate frame. Since the computations
are generally performed in another frame, the computer must
provide the transformation between the body coordinate frame
and the inertial coordinates. Hence, by eliminating the
gimbaliassembly, the burden of storing and updating the
inertial orientation information is placed upon the guidance
computer. The inertial measuring instruments also present
a very serious problem in a strapped-down system because of
the environment in which they must perform.(1,3,6) Most
previous gyro applications used the device as a null
ihstrﬁment operating in a non—rotatiné or slowly rotating
reference frame(l,2,3), however, in the SErapped—down
system, the gyros are required to operate in the generally
rotating body frame. Since the accuracy obtainable from a

gyroscopic instrument depends upon the angular rates to



which it is subjected, the gyros will need to be of signifi-
cantly better quality. However, the development of gyros
and accelerometers which can be more accurately restrained
through pulse torquing and the development of compact high
speed digital computers gives reason to believe that the
strapped-down system is feasible as an accurate navigation
system. (4,5,6)

A linear analysis of a navigation system usually gives
valuable insight into the performance of the system, especially
concerning the response of the system to error sources. The
major objective of this paper is the development and verifica-
tion of a linear analysis for a system computing in the
navigation frame and a system computing in an earth centered
inertial frame. To verify the validity of these developments,
the systems will be simulated on a digital computer. Error
sources to be considered are accelerometer bias, gyro drift,
torquing uncertainty, and initial matrix misalignments. A
comparison of the two systems will be made concerning the
response to the various error sources and to mechanization
advantages or disadvantages. An analytical study is made of
the system which computes in the body frame in order to

investigate its requirements for mechanization.



2. SYSTEM MECHANIZATION

In this section, some of the possible mechanizations of
a strapped-down navigation system are presented. The charac-
teristic which is common to all strapped-down navigation
systems - is the fact that the accelerometers are mounted
directly to the vehicle and, hence, measure the specific
force vector in vehicle body coordinates. What is then done
with this specific force information is the major point of
difference in the various system mechanizations. The general
configuration Qf a strapped-down navigation system may take
either of two(6) basic forms. The first system uses the
angular rate information from the body mounted gyros to compute
a continuously up-to-date transformation matrix which relates
the body coordinate frame to some stabilized coordinate frame.
The specific force acting on the vehicle, as indicated in
body coordinates by the body-mounted accelerometers, is then
transformed to the stabilized coordinates through the trans-
formation matrix. The navigation computation is then carried
out in that frame just as if a physically instrumented
stabilized frame had been employed. The second system solves
the entire problem directly in the body coordinate frame.
Solving the navigation or guidance problem in body coordinates
requires the use of Coriolis terms in the differential
equations which account for the changes in the components of

a vector along body axes which are due to the rotation of the



body.

There are basically three different computation config-
urations which may be used to mechanize a strapped-down
navigation system. The three coordinate frames used as
computation frames are the inertial frame, the non-inertial
navigation (or local vertical) frame, and the body fixed
coordinate frame.

The non-inertial navigation frame configuration is
computationally analagous to the three gimbal local vertical
navigation system.(1l,2) The transformation matrix is
computed and then used to transform the measured specific
force, which is coordinatized in the body frame, into the
inertial frame. This is then transformed into the navigation
frame using latitude and longitude information. Acceleration
compensations are then made and the resulting signal is
integrated once for velocity information and again for

position information.

ACCELERATION

COMPENSATION

|
BODY-F LXED =b 1 =i
ACCELEROMETER £ [y £ cy ;l* » COMPUTER ?
TRIAD
COMPUTER

3-AXIS w?b T
RATE .
GYROS

Figure 1. Computation in navigation coordinates



The strapped-down system which computes in inertial
coordinates is computationally analagous to a space-stabilized
system. Again the gyro output information is used to compute
the direction cosine transformation from body coordinates
to inertial coordinates. The inertial acceleration is
obtained by compensating the gravitational force from the
transformed specific force. This inertial acceleration is

then integrated twice to obtain navigation information.

BODY~FIXED -1
+ t rt |wavicarioN L

ACCELEROMETER Jf jf( )ydtdr |

PRIAD + oo COMPUTER 1
GRAVITATION
COMPUTER

3-~AXIS G?b

RATE

GYROS

Figure 2. Computation in inertial coordinates

The system which computes in the body fixed coordinate
frame is the most radically different of the three configur-
ations. In this system the specific force vector is operated
on in the body fixed frame; it is not transformed into
another coordinate frame. This body resolved vector is
updated using the standard form of the Law of Coriolis. (7)

If two frames have a common origin and differentiation for
any vector A it is true that

AI=AB+WXAB



where W is the angular velocity of the moving frame with
respect to the stationary frame. If the above equation is
to be practically applied, all components must be in the
same frame. Assuming that all the components are available
in the moving (body) frame, the vector A resolved into

moving axes may be obtained by integration

A= jildt —'/;Wxi) at

For example, if A_ is the output of an orthogonal triad of

T
body fixed accelerometers and W is the output of a correspond-
ing set of gyros, the velocity vector resolved into body axes
may be computed

VB=a—WXVB

where a is the output of the three body fixed accelerometer.
However, to use this equation to obtain position information,
gravity must be resolved into the body frame to compensate
the measured specific force. Thus it seems that a transfor-
mation matrix is necessary for navigation even though it is
not used in the same manner as the previous configurations.
For navigation information, a second integration must

be performed to obtain the position vector in body coordinates.

RB = VB - WX R

However this information is in the body frame and, to be

useful, it must be transformed so that latitude and longitude



information is available. Hence, it appears that the
orientation of the body frame to a stabilized frame must

be computed in all three configurations.



3. SYSTEM EQUATIONS

The vector output of an accelerometer triad is propor-
tional to the nonfield specific force coordinatized in the
mechanized frame. The output signal of the accelerometer

triad may be written as(1,2)
B =cix -t

where " is the nonfield specific force vector in the mechan-
ized frame, m; C? is the coordinate transformation matrix
relating the inertial axes to the mechanized axes; % is the
inertially referenced acceleration; and G is the gravitational
acceleration due to the earth. The mechanized frame for a

strapdown inertial system is a body fixed frame, b, such that

=b

P - c]iD(E -5t

For the system which computes in the body frame, the variables
needed to obtain navigation information are coordinatized in
the body frame. To obtain an expression for r! which may be

b

» . _i ] - s
used in the above equation, r~ as a function of r~ is

differentiated twice.

Differentiating with respect to time yields

=i _ i =b i =b

r- = Cb r o+ Cb r
_ ~i,=b b i -b
= Cb(r + Ci Cb r)



It is known that

b i b _ z y
Ci Cp = ¥y =

where the elements of the matrix, Q?b , are the elements of
the angular velocity of the body frame relative to the

inertial frame coordinatized in the body frame.

-W - b
X
wli?b, = Wy
WZ

Making this substitution yields

=i _ .i,=b b =b
r- = Cb(r + Qib r)

Differentiating again yields

i _ i,=b b b , b =b b b =b
r- = Cb(r + ZQib r- + Qib r + Qib Qib r)

So that for a strapped-down system

? =Pt -ah.
i
becomes
=b _ =b b =b ‘b =b b b =b _ =b
f7 = + ZQib r + Qib r- o+ Qib Qib r G

10



Integrating by means of the method developed in the previous
section yields fb . However, the vector fb is generally a
complicated function of time as are the acceleration com-
pensation terms. In addition, the vector Eb as such yields
limited information for navigation purposes and must be
related to another coordinate frame to obtain meaningful
information. Also, the explicit calculation of G in the
body frame is a complex operation.

Hence, the non-field specific force in the body frame,

fb

, 1s usually transformed into another frame before calcula-
tion proceeds. For the case of a system computing in the
navigation frame, the signal fb is transformed into the new

frame, and a similar development yields an expression for

the non-field specific force in the navigation frame.

B = %+ 200 ™+ ) T+ el o] °-8°
in in 1in

The variables in this expression are much more manageable than
those in the expression for fb because of the great complexity

of the equations which describe 7P, £, ana ¥°

as functions
of time. Hence, the navigation frame is a valid choice for
a possible computation frame.

For the system which is mechanized to compute in the

earth centered inertial frame, the signal fb is transformed

into this inertial frame, and now, the basic system

11



computation equation is given simply by

or

Navigation information is readily obtained from rt , and the
only obvious disadvantage is the necessary explicit calculation
of G in the inertial frame so that the inertial frame is

another valid choice as a possible computation frame.

12



4., THE TRANSFORMATION MATRIX

There are essentially three methods of representing
rotational transformations(5). The most common of these is
the matrix of direction cosines. This matrix may have its
elements written explicitly in terms of the nine direction
cosines or in terms of a set of Euler angles. The second
method is quaternions which use four parameters to describe
a rotation. The third transformation uses a vector to
represent the rotation, and performs the transformation by
means of purely vector and algebraic operations.

In this paper, the transformation will be accomplished
using the direction cosine matrix. The transformation itself
can be found by simply identifying the orientation of each of
the body fixed axes in terms of the direction cosines between
these body axes and the inertial coordinates. Using direction
cosines to describe the relative orientation of coordinate
frames, the components of a vector in body fixed axes are

then related to the components of the same vector in inertial

space by
[ 7T = T T [a
RBix| = [Pz Piz Pis| | %
Biyl = P21 P2z Dazf |2y]
Bizy = |Pa1 P32 DPia3| |2,
where Abx ’ Aby , and Abz , are components of A in the body

frame and Ai , A, , and Aiz are the components of A in the

X iy

13



inertial frame. The next step is to generate the elements of
the transformation matrix using gyro information with the
angular rates being in terms of body frame components. The
transformation may be written

Aik = ijij ABj k, =1, 2, 3
That is, A;, is the KB component of ii and KBj is the jth

component of A The definition of ij is given by

B .

)

I

>
L]

>

kj ik Bj

where l( ) is the unit vector in the direction indicated by the
subscript.

Letting W equal the angular velocity of the B frame with

IB

respect to the inertial frame I, then

~

d _- »_/\ -
ED.-—D.—l. (WIBXlBj)

or in index form

D

Dy = Pi,5+1 "iB(j42) ~ P

k,3+2 "IB(§+1)

The result may also be obtained by direct differentiation of

Aj = DAb

I
(W)
pd
+
o
O
i

14



This may be interpreted as the Law of Coriolis in matrix form.
It the term D ~D A is identified with WIB pe ib , and the

angular velocity matrix QIB be defined by

0 -WQ W&
QIB = Wz 0 —Wx
-W W 0

Y X

Note that these angular velocity components are measured in
the body frame. Then

WIB X AB = Q V=D D Ab

Thus the differential equation for D is D = D @ which expands

to give the previous result.

This represents nine separate equations: there are three

sets of the form

w0
il
w}
=
]
O
=

k1 k2 "z k3 "y

O'
|
o
=
1
)
=

k2

[
|
O
=
1
O
=

k3 - Yk1 "y k2 "x

15



Multiplication by dt and integration yields

Dy = /Dkz a6, - /Dk3 e,
P2 = ka3 dy - [Dkl a8,
k3 = kal a8, - ﬁk2 a9y

Hence, the terms of the direction cosine matrix may be obtained

I

D

by numerical integration. The most common of these schemes

are(8)
a) the rectangular rule
9 (n)
"/E(e) de = A8 C[6{(n-1)]
8 (n-1)
b) the trapezoidial rule
8 (n) 20
fc(e) de = 2 {c[e(n—l) + cre 1}
9 (n-1) '
c) Simpson's rule
efn)-
/C(G) dg = é%-‘{C[@(n-—Z)] + 4C[6(n-1)]1 + C[e(n)]}
® (n-1)

16



5. ANALYSIS OF A STRAPDOWN SYSTEM COMPUTING IN THE
NAVIGATION FRAME

The signal flow diagram for the system in shown below.

BODY~FIXED
ACC.
TRIAD

3-AXIS
RATE
GYROS

r-

L.(0) LC(O)

— ! -
f ( )dt *I ( )dt—l——r‘+ * L,
o e}

ACC. COMP.
n .
£ A
Y +1= 1
rlcosL

t
Cf
o

t
+ 4
"dt?g'ZL‘ Mt—éﬁr‘

|

[}

1

I

|

)

. i
XC(D) Xc(O):
|

|

e

|

1

; |

s e e e e o s . i o - i ]

Figure 3. Signal Flow Diagram for Computation in

Navigation Coordinates

In the analysis of this system, there are four points

of interest: 1) the accuracy of the accelerometer signals,

2) the effect of gyro error sources,

3) accuracy of the

coordinate transformation Cé , and 4) accuracy of the
n

coordinate transformation Ci .

Accelerometer error can be primarily attributed to

accelerometer uncertainty and scale factor error.

Analytically the specific force signal in body coordinates

may be expressed as

ax
+ 8t +| o
¢

|

17




b

where: f_ is the measured specific force

c
P is the specific force
§T° is the accelercmeter uncertainty

and a, is the scale factor uncertainty for the ith accelero-
meter. The gyro error sources to be considered are gyro drift

and torquing uncertainty. Since the output of the gyro triad
i

b 14
directly effect the validity of this coordinate transformation.

is used to up-date the transformation C these errors

Another source of error is the accuracy of the initial align-
ment of the body frame with its determined orientation. The
coordinate transformation C? is kept up to date by feedback
from the system output (indicated by dashed lines on the signal
flow diagram), and hence, errors in the output generate errors
in this matrix. Again, initial alignment determination is a
source of error.

The actual orientation of the body frame is denoted by b;
the ideal (non-rotating with respect to the body) orientation
is denoted by b'. However, due to the gyro error sources
and the inaccuracy in the initial determination procedure,
there is an error between the actual orientation and the
ideal orientation. Hopefully, the actual initial orieﬁtation
of the body frame is coincident with its determined orienta-
tion, but if it is not, the misalignment matrix M is a

skew symmetric matrix given by

[0 ¢, -z,
M=1]-%t, © Sx
t, -ty O

18



Thus the total error transformation between the actual and

the ideal orientation

Cpr

where §

O

Specializing now
error sources are the.
is a

. b
error matrix C_,

drifts which are denoted by WX , W

velocity vector

is given gg, such that

84

£+

is a direction cosine transformation
for the error in orientation due to
gyro drift

is a direction cosine transformation
for the error in orientation due to
torquing uncertainty

is the misalignment matrix

to the stationary system, the principal

accelerometer bias and gyro drift. The

function of time because the gyro

' W -

2 As an angular

Y

This may be interpreted as the angular velocity of the b frame

to the b' frame, with
body frame b.

differential equation

The matrix

the rates coordinatized in the actual

0

93 is defined by the matrix

8y = 84

19



where

(0] -W W .
z Y ;
a=1w 0 -W,
-W W 0
Y X

For the case which has been assumed of constant gyro drift,
the solution of this matrix differential equation is given by
_ 0t _

gd(t) = e— I
This, then, is the direction cosine matrix relating the time
dependent orientation of b' to b due to the gyro drift.
It is noted that the off diagonal terms are the principal
elements of this matrix.

The error transformation is now seen to be an explicit

function of time and is given by

The matrix exponential is analytically given by the expression(9)

1 +jo + 0
&t = 773 [ 3det(£s - g_)(’l 3Adj (1s - a){e®t as
-jo + o

20



Letting Q = W2 + W2 + W2 A—m B—w c—WWz
g X y z 0T w, ! - Wy r~ - W,

the error transformation matrix as a function of time is

given by

W wi-oh - 2,92)1/2 R
R - S et i)
2 2,1/2 '2 2_n2
A, . % gd . w-0?
t_::. (t) = '1[62 P cos (@t+tan™t %)] -ty a* - —%r— cosgt
nlendy}/2 2,,2,1/2 -

-3 _ a%«?) -1 ¢ _(chgh 19].

-qy[’? - _Qq. cos (Qt+tan ‘%)] +5, "‘[Q < cos (Qt+tan %)] 1

2..2,1/2
B _(8 )
w]|=- ~] - .
y[oz I cos (gt+tan g)] Sy

2) 1/2

2,
-C _(C -
"'z[‘! i (Qt+tan 1_%)] 4Ty

Q Q

1)
where the L, s are the elements of the misalignments matrix.

Hence, the specific force signal coordinatized in the

navigation frame is given by

where the transformation C? is given by

e

-sinL cos -sinlL sinaA cosL
n ,
C:.L = -sinA coSs 0
-cosl cosX -cosL sinA -sinL

21



and the elements are continously computed as functions of the
system output.
The expression for the specific force coordinatized in

the navigation frame has been previously given as

=n <n =n

R R T Yo Lo noFn oLt !
-1

+ o o 4 of
-1l =—1nN in

If acceleration compensation terms are calculated which when
summed with the above expression remove the last three terms,
that is, remove Coriolis terms and terms arising from

W x (W x R) operations, then

£ =r L - &g

nx L
and
fny = rli cosL + ng
where
r;, = r(l-e 2cos2L) = Fadius.of curvature
in meridian plane
r, = r (1+2e sin2L) = radius of curvature

in co-meridian plane
€ = earth ellipticity = 1/297

£ = merdian deflection of the vertical
(positive about east)

n = prime deflection of the vertical
(positive about north)

Latitude and longitude may now be obtained by double integra-
tion of the north and east specific force measurements
respectively. It is to be noted that the complex calculation

of the acceleration compensation terms is required and is a

22



disadvantage of the mechanization.

To analyze the affect of the various error sources
and system performance, a simulation of the system was
performed on a digital computer. The numerical integration
was performed by means of a second-order Runge-Kutta

algorithm, For a differential equation defined by

x = £(x,t)
the second-order Runge-Kutta algorithm for the solution
is given by (8,10)

_ h h
Xpe1 = Xp t 53 £, o £ ) + 5 £Ix * hE(x, ,» t)), t + h]
where h is the numerical integration step size time interval.
In this simulation, the body frame was assumed to be
initially aligned with the local navigation frame with,

of course, the possibility of a small misalignment error.

23



6. ANALYSIS OF STRAPDOWN SYSTEM COMPUTING IN THE
INERTIAL FRAME

The signal flow diagram for the system is shown below.

BODY-FIXED f

X . t T r .
1 + .
?‘CR%E\IISEROMETER - » Cb T / / ( )at dr NAVIGATION jrwm-l,
o o COMPUTER

l COMPUTER l GRAVITATION l .

y COMPUTER
3-AXIS ﬁ?b

RATE L

CYROS

The basic equatioh describing the operation of this system is

given by

Once the specific force vector fg , which is measured in the
body frame, is transformed into the inertial frame, navigation

information may be obtained by double integration of the signal

No acceleration compensation terms need to be calculated.
However, this mechanization has the disadvantage that gravity

must be computed explicity.

24



The output of the system is the position vector
cocrdinatized in an earth-centered inertial frame. As
-such, it gives limited information, however, latitude and
longitude are obtained without difficulty by means of the

expression below.
rIx

-1 X

A = tan rIy

and
-1 riz

V;ZIX + rZIy

As in the system which computes in the navigation frame,

L = tan

there are four major points of interest. Three are identical,
but the fourth is quite different. Again interest is directed
toward: 1) the accuracy of the accelerometer signals, 2) the
effect of the gyro error sources, and 3) accuracy of the
coordinate transformation Ci . Now, instead of investigating
the transformation C? ; this system requires that the means

of gravity calculation be investigated. Resolved into the

geocentric inertial frame, the gravitation vector, G, can

be expressed to first order as(2)

, E% i . re ? rt 2 rx
Gy = "2 )1+ 5 Jole [1‘55“ ]r_

25



6

where Gm = 1.4 x 10 ft3/sec2

3

ol

and J2 =1.6 x 10

For stability reasons, the inertialiy computed position

vector is not used in the calculation of the gravity magnitude,
but is used only to obtain the direction of the gravity

vector. Instead, r is calculated as the sum of externally
obtained altitude information and the elliptic geocentric
radius,

r=1r +h
o

e 5
where r = re[l—f (1-cos2L)+T6 ez(l—cos4L)]
and e = earth ellipticity

Neglecting higher order terms, the expression for gravity

may be written in vector form as

E

r
3
(ro+h)

Cc

(@]
ik
1

Hence, the system is now susceptible to error due to incorrect
altitude information.

To analyze the performance of this system and its
response to the various error sources, simulatiqn was
performed on a digital computer. For the stationary cése,
the error transformation between the actual body frame
orientation and the ideal orientation is again given as

a time dependent matrix

b N at

26



The basic equation describing the system may now be

written as

or

=i i b =b E -
r T Yo
(ro+h)

Once the inertial position vector, ', has been obtained,
latitude and longitude may be calculated by means of the

given equations.

27



7. LINEAR ANALYSIS OF STRAPDOWN SYSTEM COMPUTING IN THE
NAVIGATION FRAME

In this section, a linear analysis will be performed
for a strapdown inertial system which computes in the
navigation coordinate frame. The result of this analysis
will be two linear differential equations describing the
position errors with the inertial sensor uncertainties as
the forcing functions.

The output of the body-fixed accelerometer triad may
be interpreted as the true specific force corrupted by
accelerometer uncertainties. The system then transforms
this signal into the geocentric inertial frame via the

computed transformation Cg so that the signal is further

corrupted by errors in the transformation Cé .

Analytically this may be expressed as follows

=i 1 =b
£ = G ¢
Obtaining differentials yields
=1 _ i<b i (=b
ch = 6Cb fc + Cb 6fc
so that
=i _ =i =1 _ i =b i zb i .zb
fc = fc + ch = Cb fc + GCb fc + Cb Sfc
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2 term will be taken to include all error sources

The §F
arising from the accelerometers, and dci will be the errors
of the transformation matrix.

The transformation to the navigation frame may be

expressed as

= _ n n =b
where AC? is the error in the determination of C? . To find
an expression for AC? , the known matrix differential

equation below will be used.

c? = B ot
i i "ni
where
0] —WZ Wy
Q= Wz (o] —Wx
-W W 0]
vy X
and
W ]
pid
Ww=]|w
Y
W
>3 z-

is the angular velocity of the inertial frame with respect

to the navigation frame coordinatized in the inertial frame.
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This angular velocity is given by

L sin)
W= | -L cosx
A
so that
por . . T
0 =-A -L cosA
AC? n . . N
= Ci A 6] -I, sinA
At
L c¢cosA L sin) 0

Multiplication by At yields the desired expression for AC?

0 -8 A -8L cosA
SA 0 ~8L sin)

§L cosA 8L sinX o]

Hence,

} |
ct o= e o+ o)
1 1 1
_ ~Dh

_ Ah i n
= Ci[I + Cn ACi
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So that the computed specific force in the navigation frame

is given by

=N _ .n i,.n =i i =b i .=b
_ =h n..i =b n.=b n =i

Substituting the relations

i_ Li n_ .n
GCb = cb[eb] and ACi = Ci[©i]
yields
B2 - R o4 R clre1c® P o4+ B sEP 4+ (o, ]cl EP
c c i "b""b""n b i i "n

By means of the similarity theorem,
[c?1 [6,] [CO1E" = [0 ]1ED
b b n N

where [GN] indicates that the elements are now coordinatized
in the navigation frame.
Similarly,

n i, _
[Ci] [®i] [Cn] = [¢N]

so that now,

Eg. = [T+ 0, + eN]fz + cD sgP
The matrix [@N] is given by
[ o ersin L 6L
o =] dAsin L 0 S§icos L

~-8L -8 cos L 0
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It is shown in the general analysis of this system, that if

perfect acceleration compensation is provided, then

rLL - &g

rzhcosL + ng

r-g

In the computation variables, the X or north component of

computed specific force in the navigation frame is given by

and the Y or east component is given by

= r_ AcosL
2 c
c

where the variables are defined

So that now

i

= rp + &h
c

= rl + &h
c

= L + éh

=L + §A

rLL + LSh + rLéL

rzkcosL + rzcosLSA + ShicosL - rlksinLéL
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-rLsinlLéX + r cosL8A - SLr

Obtaining the product @N fg and substituting the expressions

n n
for fc'X and fc‘X yields for the X equation

. on s T
Léh + rdL + Ar sin2LSA + ¥SL + gL = -£g + {cgebcﬁfg + cn.csfb} 1j

and for the Y equation

JLksinL + ¥ cosLéX + g cosLé)A + AcosLéh

T
= ng + {cgebcﬁ Eg + cﬁ,@?’} 0
If the system is stationary, the equations

become uncoupled and are given by

SL + W2SL = -W2E + z clp. cP ER 4 R, FEP ! 0
s - s L b’b'n “c b!'
o © l T
2 - n b zn n 0
S\ + WSGX = Wsn + ;cbebcn fc + Cb'Sff
rxcosL '

In a simplified form, these expressions for a stationary

system may be written

e o GfN
SL + Wo6L = -W20.. + W2 X - wle
s s N s g s
y
[ ¥ 6fN
2., _ 1 2 2 2
SA + Wsék = Z55L [Ws . + WSGNX + Wsn]
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0. ] 6, ] SE. (s, ]
Nx bx Nx bX
6 _ n A1 8 S§f _ ~n i £
Ny = C Cb by and Ny = Ci Cb by
GN eb 6fN Gfb

L Z- L 24 g Z_ | Z‘_

and for a stationary system

~£g |
—-n _
.fc = ng
—g_

These two linear differential equations will now be
solved with the various error sources as the forcing
functions. These results will then be compared with the
results from the digital computer simulation in order to
analyze the accuracy and validity of the linear development,

For ‘a stationary strapdown inertial system computing
in the navigation frame, constant accelerometer bias
_ results in responses given by

Sf

SL(t) = Dx (1-cosw_t)
g
and
6fN
Sa(t) = X (lécoswst) secL
g
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These results of the linear theory agree very well with the
results of the computer simulation which solved the system
non~-linear differential equations by numerical methods.
This agreement is illustrated in Graph 1.

To evaluate the error for constant gyro drift, the ON

error matrix must be investigated. It is known that

1 b
C. =2C Qib

o

i
b
However, for linear approximation the transformation may

be regarded as

and

b _ ,b b
Vip = %40 + 4y
This may be interpreted as

i

b

where @i is a small perturbation misalignment matrix.

0 -OZ @y
0 =] 0 0 -0
i z X
-0 C] 0
y X

Hence for the total derivative, the above yields

i

i, =
[(I-0,)Cpl = (1-0;) C

b b
(Qp*+2540)

3"
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This simplifies to

e i i
OiCb = Cb
b R < P § i
Now Qii' = Ciﬂii,cb so that
5, = al,
i ii

R |
Gi = Cy Sw
Transforminé to the n frame
=cl 5
61 =C, 9,
Therefore
0, =Ct08_ +cC
i n n
_ A1 on -
= Ch %0 %n
Substitution yields
i3 in = _ A1
c, @h +C Q. 0 = Emb

ox

36



If the system is stationary, and the body frame is initially

aligned with the navigation frame, then

u |
X
n —
cbmb = Uy
UZ
.

Mo ] ) G
@N 0 - e sin L 0 ON UX
OE = wie sin L 0 wie cos L @E = Uy
L?Q 0 -wie cos L 0 -L?b. UZ

This may easily be solved for constant gyro drift and the
resulting system output is the response of the system to
these forcing functions.

The solutions to the system linear differential equa-

tions are given by

l

-2 i - 2
SL(t) ws(w. Ux sin L + Wia Uz cos L) £, (t) W Uy £, (t)

ie

2 . 2
SA(t) —ws Wi Uy sin L fl(t) + W Ux fz(t)

e '
+ W wie (UX cos“‘L Uz sin L cos L) fg(t)

where
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£ (t) = 3= (—21) (1-cos w_t) + =i (i) (1=coOS W, _t)
w2 w? -p? 8 w2 w2-p? e
S le S le le
1 . 1 1 .
fz(t) = = ( " )sin wst + = ( — ) sin wiet
S w, =W ie W =W
lie le
£,(t) = t+ I (L )sin w t + —2 (i) sin w, t
2,2 3 : =] 3 2 2 le
wows w W= W w -
s 1le ie l1e le

It is noticed that because of the large difference in mag-
nitude between Wy and Wigr the terms involving the earth
rate mode greatly dominate the observed response. As shown
in Graphs 2 and 3, these results agrée well with the digi-
tal computer simulation. Obviously, the results of the
linear theory will begin to diverge from the general simu-
lation when the elements of [Ob] develop sufficient magni-
tude so that small angle approximation is not wvalid.
Uncertainty in the accuracy of the torquing mechanism
of the rate gyros results in an uncertainty of the angular
velocity of the body frame with respect to an inertial frame.

This uncertainty may be expressed as

wa = - EZ wb
ib . T ib

where %2 is the uncertainty of the torque generator. For a
stationary system initially aligned with the navigation

frame,
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W, cos L
ie

o
o
|

éwib = - 0

i

-, in L
ie ®

e

Now using the relation derived in the gyro drift error analysis
= n _an
o, + 9, 9, = ¢ Suy

The vector differential equation is then given by

B 1T T . 11 ] [~ ST i
@N(t) 0 w; o sin L 0 ( GN(t) - wie cos L
@E(t) =|-w;, sin L 0 ~w.  cos L @E(t) + 0

. 8 .
ED(t{ ] 0 Wy, COS L 0 J ?D(t) T wie sin Lj

Substituting the solution into the system differential equa-

tions and solving the resulting linear equations yields,

= -2 ]
6L(t) = -w. (w; U;sin L + w,  U,cos L) £,(t)
; - 2 2,.2 2+ _ :
SA(t) = wg U £,(t) + (wsmie)(Ulcos L - U, sin L cos L) £, (t)
where
ST
U, == 5~ Wy, cos L
ST .
U, = T Wie Sin L
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and £, (t), £,(t), and £,(t) are as given in the gyro drift
analysis. Again the earth rate modes dominate the res-
ponse as is shown in Graphs 4 and 5, and the agreement with
the digital simulation is very satisfactory.

Note that for both constant gyro drift and torquing
uncertainty, the latitude error is bounded, but the longitude
error is a ramp function and hence unbounded in time. The
effect of the ramp is diminished in the simulation due to

its coefficient being very small, but it is seen that

SA(t)
N Ut

cos®L - sin L cos L

so that the effect is fairly strong ia the long run analysis.
For initial body frame misalignmaent, the position error

is given by

SL(t) = —ON (l-coswst)
y
and
Sa(t) = @N sec L(l—coswst)
X
. . n b .
where [ON)M is given by Cb[@b]MCn, and [Ob]M is the skew

symmetric misalignment matrix. Graph 6 illustrates agree-
ment with the computer simulation,

If is assumed that the acceleration compensation is in
error, then the analysis is somewhat more involved, and the
result is slightly different in that some relatively small
coupling effects are brought to light.

The analytically derived expression for the specific

force in the navigation frame can be shown to be given
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by (1,2)

N 1 2 .2 . o . . .
rLL + Erz(k -Wie)51n2L + ZrLL - Ye sin2L~-3er sin2LL

7 = rzkcosL - ZrKLAsinL + 2r2AcosL + ng
r2
. - . 22 2 2 L 2
g =¥ rLL esin2L + rz(x -Wie)cos L + = L

L

For computed variables, the x component is given by

'2 2 . *
(A=W, )sin2L + 2r
c c 1e c Lc

L
c
- ¥ e sin2L _-3er _sin2L iz - &g
c c c c'e

and the computed y component is given by

chccosL - 2r£cL0A051nLc + ZrQCAccoch + ng

Substituting the relations below

r + éh

H
il

r. + Sh

2
R

+ 6h

a]
R

2 Ty

L + 3L

£
i

>
Il

A+ SA

41
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and providing compensation yieids for the compensated

computed x component
£, = ¥L + r8L + 2LSh + risin2Lsi + Léh
and for the compensated y component

fg, = ricosL + rcosLSA + 2[rcosL - rLsinL]8XA - 2risinLéL
- r[Asinl + ZLchsL]SL + 2icosLéh + AcosLéh

It has been shown in this section that the computed specific

force given by

n b

£, = [1I + @N + eN] fc + Cb, Sf

C

Obtaining the product @Nfﬁ where fg is the ideally compensated

specific force and substituting the expressions for fg. and

X
n

fc'y yields for the x equation

réL + (¥+g)8L + risin2LéX + % risin2LdSA

T

_ - M, n b =n n.=b
= LSh + 2LSh - &g + {Cb eb Cn fc + Cbéf }
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and the y equation

rcosLéA + 2[rcosL - rLsinL]&A + [ (¥+g)cosL - rLsinL]éA
-2risinLéL - r[AsinL + 2LicosL] 8L

= -;cosLﬁh - ZicosLsﬂ + ng + {CE eb Ci 52 + Cg SEb} '
The preceding equations give the latitude and longitude
errors for arbitrary vehicle motion for the strapdown
system which computes in the navigation frame. 1In the
preceding development, in order to make the resulting
equations both meaningful and manageable, certain
assumptions have been made to delete terms which have
small magnitudes relative to the other terms. These
assumptions are based on a guantitative description of
vehicle motion which is in accord with those to be
encountered by the supersonic transport. Assuming that
the following data represents the maximum values of

vehicle motion

rL = r) = 0.5g

max max

émax = 100ft/sec

imax = Xmax = 1.6 x 1074 rad/sec
Yhax = 29
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and that the maximum error data is given by

- _ _ -3
aLmax = ﬁxmax = 10min = 2.9 x 10 rad
. e _ _ -6
dLmax = 6Amax‘— 6Lmast = 3,6 x 10 rad/sec
SL __ = 6A___ = 6L___W? = 4.5 x 10”2 rad/sec
max max max s °
Ghmax = 2000ft.
Ghmax = Ghmast = 2.5ft/sec

results in the given equations when all terms which are of
magnitude‘less than 2 ' x 10-5 g are neglected.
For the case of a stationary system, the equations

simplify to the coupled linear equations

5L + W2SL + W, sin2Léj
S le
l {.n b =zn n .zb T
=—W£+;1Cb8bcnfc+cb6f}
S\ + W2SA - 2W. tanLSL
S le
2 secL n b =n n .z=b QT 0
= WS secLn + 222 { cp 8, C. Ey + Cp oF | .
0

However, it is noted that the cross-coupling is rather
weak, and that the uncoupled equations obtained assuming

perfect acceleration compensation give an accurate
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description of the system.

In conclusion of this section, the excellent agreemént
between the results of the linear analysis and the results
obtained by numerical integration of the complete system
differential equations indicate that the derived linear
theory is indeed a wvalid analytical description of the

system under stated limitations.
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8. LINEAR ANALYSIS OF STRAPDOWN SYSTEM COMPUTING
IN THE INERTIAL FRAME

In this section, a linear analysis will be performed for
a strapdown inertial system which computes in geocentric
inertial coordinates. The result of this analysis will be
a linear differential equation describing the position
errors in the inertial frame with the inertial sensor
uncertainties as the forcing function.

This system transforms the output of the body-fixed
accelerometers into the geocentric inertial frame and then
solves the navigation problem in that frame. In the inertial

frame, the definition of specific force yields

where ' is the position vector from the origin of the
inertial frame to the origin of the system frame. This may

be rewritten using computational variables as

+G. =71

c c c
Now defining
SRS

and also defining

Defining the distance of the system from the center of the
earth as the radius of the earth plus the alitute obtained

from an altimeter yields r, = rg + hc =r, + h + dh
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Gravity is computed using

g = - 7
© (r +h )3 ©
o ¢
Substitution yields
G = - S —— (¥h + 8T
(r_+h+8h)
o
Now making the approximation
-3 _ -3 sh =3 _ -3 ,._, _6h
(ro+h+6h) = (ro+h) (1+E;IH) = (ro+h) (1-3 ro+h)
substitution yields
= E Sh =i i
G = - (1-3 ) (r7+3r)
c (ro+h)§ ro+h
= E =i E =i E i
G, =~ r-+ 3 Shr™ - or
c (r_+h)> (r +h) * (x_+h)°

The final result is given by

& = at 4+ 3y?
C S

71 _ 2=l
GhR Wsdr
Substituting this into the specific force relation yields
=i

et o+ 5rt = E' o+ FEL + @+ 3wl snft - wlSE
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Noting that Ft =t -gt , then

il

5t = TE 4+ 3wl st - Wl TE

a}
+
=

n N
a1

[
il

3FL 4+ 3wsnli
s R

Now investigating the SE' term, it is known that

i _ i =b
£t = E

Obtaining the differential yields

TEL = sct P 4+ ¢t T
b b
where . \
i_ i
6Cb = Cb[eb]
so that
—i 2 =i _ i =b i -=b 2 i
3 + W S = c L8, 1£° + ¢ SE- + 3w, éhf
Substituting for fb yields
1 2 =i _ i b =i i «=gb 2., 71
S§r~ + WS or~ = Cb[eb]Ci £f5 + Cb SE- + 3W86hR

By the similarity transformation theorem, the final result

may be written as

. e

i 2 i =i i b 2., 71
S + W S = [ei]f + Cy SE- + BWSGhR
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Latitude and longitude errors are given by

6rNX Sr

8L = r = rcosL

where [EE&] = c.[EFi]

The differential equations describing this system will

now be solved with constant gyro drift as the input; hence,

2
s

£ =i _ i b zi
Sr~ + Widr— = cb{ebl Ci £

where the elements of the [eb] matrix are given by

o] L]
0, Ut
0 = Ut
Yy y
0 Ut

Z 4

where the U's are the respective gyro drift rates.
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Assuming that the body frame is stationary and initially
aligned with the navigation frame, the solution of the

above vector differential equation is given in component

form as

i . s _ .
6rx(t) = Uyg san[coszfz(t)-zwiesanfl(t)] ng[zwiecoslfl(t)+31n2f2(t}]

i . . .
Gry(t) = Uyg san[ZWiecoslfl(t)+51n2f2(t)+ng[coszf2(t)-zwie51n2f1(t)]
Gri(t) = -U-g cosL[l t - 1 inWw_t]
z y ;7 ;38 s
8 s
where
1 . 1 1 , 1
£.(t) = —~—s———=—=cosW_t + £ sinW, t ~ ————F—7=cosW, t
1 W2 -w?)?2 (Wo-W2 ) 2w, 1 wi-w2 )2 ie
ie s ie ie s 1le
W§+W§e 1 2Wie
fz (t) —_ > 2 2:;an t + T—T—t cosW t + 5 5 251nWlet
W_ (W, -W) (Wo-W. ) (W-W., )
s ie s ie ie

To obtain position errors

Grz s
8L = - and SA = TOoRT,

where

no_ __. i . . i i
er = -ginkL cos(Wiet+£)6rX sinl 51n(Wiet+2)6ry + cosLGrZ
and

n_ __. i i
Gry = 51n(Wiet+2)5rx + cos(Wiet+2)6ry
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Hence,
SL(t) = -sinLcos(Wiet+2){UyWisinL[coszfz(t)—ZWiesiani(t)]
-wai[zwiecoszfl(t)+sinzf2(t)]} ~sinL sin (W, _t+0)
{UyWisinL[ZWiecoszfl(t)+sin£f2(t)] + waz[costz(t)

. 1 .
2Wi851n2f1(t)]} - cosL UycosL[t—W s1nWSt]

and S

, 2 ., .
SA(t) -secL s1n(Wiet+£){UyW531nL[cos2f2(t)—zwi851n2fl(t)]

2 . .
—UXWS[ZWiecoszfl(t)+31n£f2(t)]} + cos(Wiet+2)secL

2

2 . .
{UyW551nL[2Wiecos£fl(t)+51n2f2(t)] + Ust[coszfz(t)

—2Wiesin2fl(t)]}

The error values given by these expressions agree closely
with those obtained by numerical integration of the complete
system differential equations. This result is illustrated in
. Graphs 7 and 8.

To analyze the effect or torquing uncertainty, the system

differential equation is givén by

2
s

i —i _ Li
Sr~ 4+ W 8r~ = cb[eb]

where [Bb] is the error transformation matrix resulting from

the uncertainty of the angular velocity of the body frame with
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respect to an inertial frame. Assuming that the body frame
is stationary and initially aligned with the navigation

frame, the error differential equations are given in component

form as
L1 2.1 _ 8T .
6rx + Wsérx = -5 9 sinicosL Wiet
.1 2.1 _ 4T
6ry + WSGry =5 9 cosicosL Wiet

The solutions to these differential equations are given by

i 8T .
er(t) -7 9 cosl Wie[ZWiecoszfl(t)+s1an2(t)]

8T .
T 9 cosL Wie[coszfz(t)—ZWies1n£f1(t)]

i
Gry(t)

where fl(t) and f2(t) are the same as given in the analysis
of gyro drift error, so that the solutions will be very similar

in form as would be expected. The position errors are given by

Gri sl
L = — and S\ = T
where
sr} = —cos)A sinLSrt - sin) sinLér:
X X vy
and
sr? = -sinasri + coskﬁrl
Y X .

Hence, the latitude and longitude error solutions are given by

_ 8T 2 . .
SL(t) = T WscosL sinL Wiecos(Wiet+2)[2Wiecoszfl(t)+51n£f2(t)]

T 2 . , .
- Er-WS cosL sinlL Wie51n(wiet+2)[coszfz(t)—zwie51n2fl(t)]
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and
§T .2

SA(t) = e WSWi651n(Wiet+2[2Wiecoslfl(t)+51n2f2(t)]
+ 3T WP, cos(W, t+2) [cosif. (£)=-2W, sinff. (t)]
T s ie ie 2 ie 1

Graph 9 illustrates the agreement of thee values with those
of the computer simulation.

If constant accelerometer bias is assumed to be the error
source, the vector error differential equation is given by

5l o+ wlrE = clsP
s b
Assuming that the body frame is stationary and initially aligned
with the navigation frame, the error differential equations are
given in component form as
i 2

st + wosrt
X ] X

i

-cos) sinL8f - sinA8f - cos) cosLSf
bl y Z

s¥L + W2sr® = —sin\ sinLSf._ + cosASE - sink cosLSE
y 7 sy x y z

st o+ W26rl cosL8f =~ sinLSf
Z s Tz X 4

The solutions to these equations are given by

cosW, t-cosW_t
i s

i s .
er(t) = [(51nL6fx+cosL6fz)cos£+6fysln£][ Wz—Wz ]
s ie
1 Wie
+[(sinLéfx+cosL6fx)sin2—6f cos®] | > > sinW_t
b4 (W2 -W%) W
ie "'s ]

sinWiet
tm—— |

(Wo=-WS )

s ie
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cosW..tfcosWst

i _ . - ie
ﬁry(t) = -[(sinLdf_t+cosLSf )cost nycosz][ W§—W2 1
s ie
W.
L ~CsinW

-[(sinLd8f_ +cosLéf )cosli-8f sinf]ll
X Z 2 2

(W, WY W

ie s s

sinWiet
tm—— ]
(Wo=-W. )
S le

i 1 s .
6rz(t) = %5 (cosL6fx s1nL5fz)51nWSt
s

Latitude and longitude errors are given by

6r2 sr2
L = —?— and SA = T GOSL
where
n i . i , i
Sr’ = =-8r sinlL cos{W. t+2) - S8r sinl, sin(W., t+2%) + cosLér
X X ie y je 4
n _ . i_. i
Gry = 6rx31n(Wiet+2) + érycos(Wiet+2)

Graph 10 illustrates the agreement of these values with those
of the computer simulation.
For initial misalignment of the body frame, the error

differential equation is given by

LEN] 2e—i _ i =b
STt + WSt = cpl6,1F
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where [Ob] is the skew misalignment matrix

0 z, —SY

6,1 = |-z, O Zy
Cy “Cx O

- -

If the system is stationary and the body frame initially aligned
with the navigation frame, the component solutions of the above
differential equations are given by

cOosW, t~cosWst

i _ . s .
er(t) = [(51nLcyg)cosz (gxg)51n2][ Wz—wz 1
s ie
1 Wie
+[ (sinLz_g)sinf+(z_g)cosi] ] sinW _t
y X W2 -W2) W s
ie s s
sinWiet
i
(Wo-WS )
s ie
i cosW, t—cosWSt
= - (si ing+ %
Sry(t) [(51nLcyg)51n2 (cxg)cos 11 WZ—W? ]
s ie
W,
1 1S sinW t

2

-[ (sinLz_g)cosf-(z_g)sinfl [
¥ X W2 W) W
ie ''s s

sinWiet
e |
(Wo-wW, )
s 1€

i 1 .
6rz(t) [gycong] — 51nWSt
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Latitude and longitude errors are given by

érﬁ ( srl
L = - and A = TEeTT
where
n i, i . . i
8§r = =8r_sinlL cos(W, t+2) - Sr- sinl sin(W., t+2) + cosLér
bo X ie vy ie X
and
syl = —5rlsin(W. t+2) + érlcos(W. t+9)
v X ie y ie

Graph 11 illustrates the agreement of these values with those
of the computer simulation.

In conclusion of this section, the excellent agreement
between the results of the linear analysis and the results
obtained by numerical integration of the complete system
differential equations indicate that the derived linear system

under stated limitations.
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CONCLUSION

The solution of the general system differential equa-
tions by numerical methods verified that the derived linear
theory is a valid analytical description of the systems
under stated limitations regarding the magnitude of certain
rotation angles. It was found that accelerometer bias and
initial misalignment result in position errors which are
very nearly oscillatory at the Schuler frequency. Gyro drift
and torquing uncertainty were found to be the predominant
error sources. For the system which computes in the naviga-
tion frames, a constant gyro drift resulted in a bounded
latitude error but an unbounded longitude error. This is
very similar to the performance of a local vertical iner-
tial navigation system (11). In fact, the systems have
thé same characteristic function but forcing functions
of different form. Hence, the similarity on response to
error sources. The strapdown system which computes in the
geocentric inertial frame has unbounded errors in both
latitude and longitude when driven by a constant gyro drift,
This performance is very similar to that of the space sta-
bilized inertial navigation system (12). Again, in this
case, the systems have the same characteristic equation
but different forms of driving functions. From these re-
sults, it would seem that the system computing in the
navigation frame possesses an advantage in error stability

over the system computing in the inertial frame.
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Each of the systems presents advantages and disad-
vantages for system mechanization. The principal disad-
vantages are computation of acceleration compensation terms
for the system computing in the navigation coordinates and
explicit computation of gravity for the system computing
in an inertial frame. For the system computing in the
body frame, the disadvantages are that gravity must be
computed explicitly and that position information is
coordinatized in the body frame and requires a transforma-

tion to become useful information.
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APPENDIX I
ERROR CURVES FOR SYSTEM COMPUTING

IN NAVIGATIONAL COORDINATES

Position errors due to constant uncertainties in inertial

SEensors.

Error Sources

Accelerometer Bias 10—59

Misalignment Angle 10™°rad

Gyro Drift 1.5 x 10" 'rad/sec

Torquing Uncertainty = 1,5 x 10—7rad/sec

Note: All plots at the approximate location of Cambridge,
Massachusetts, 42 degrees north latitude and 71

degrees west longitude.

On all plots, the smooth curve is the result of the
linear theory and the indicated points (A) are the

computer simulation results.
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APPENDIX II
ERROR CURVES FOR SYSTEM COMPUTING

IN GEOCENTRIC INERTIAL COORDINATES

Position errors due to constant uncertainties in inertial

sensors.

Error Sources

Note:

Accelerometer Bias 10—59

Misalignment Angle lO-Srad

Gyro Drift 1.5 x 10_7rad/sec

Torquing Uncertainty = 1.5 x 10 'rad/sec

All plots at the approximate location of Cambridge,
Massachusetts, 42 degrees north latitude and 71

degrees west longitude.

On all plots, the smooth curve is the result of the
linear theory and the indicated points (A) are the

computer simulation results.
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